Adaptor Protein 1A Facilitates Dengue Virus Replication

نویسندگان

  • Umpa Yasamut
  • Nopprarat Tongmuang
  • Pa-thai Yenchitsomanus
  • Mutita Junking
  • Sansanee Noisakran
  • Chunya Puttikhunt
  • Justin Jang Hann Chu
  • Thawornchai Limjindaporn
  • Xia Jin
چکیده

Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CORRIGENDUM: Adaptor protein complexes-1 and 3 are involved at distinct stages of flavivirus life-cycle

Intracellular protein trafficking pathways are hijacked by viruses at various stages of viral life-cycle. Heterotetrameric adaptor protein complexes (APs) mediate vesicular trafficking at distinct intracellular sites and are essential for maintaining the organellar homeostasis. In the present study, we studied the effect of AP-1 and AP-3 deficiency on flavivirus infection in cells functionally ...

متن کامل

Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity

Dengue is one of the most important arboviral diseases caused by infection of four serotypes of dengue virus (DEN). We found that activation of interferon regulatory factor 3 (IRF3) triggered by viral infection and by foreign DNA and RNA stimulation was blocked by DEN-encoded NS2B3 through a protease-dependent mechanism. The key adaptor protein in type I interferon pathway, human mediator of IR...

متن کامل

Dengue virus type-3 envelope protein domain III; expression and immunogenicity

Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...

متن کامل

Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes.

Infections with dengue virus (DENV) are a significant public health concern in tropical and subtropical regions. However, little detail is known about how DENV interacts with the host-cell machinery to facilitate its translation and replication. In DENV-infected HepG2 cells, an increase in the level of LC3-II (microtubule-associated protein 1 light chain 3 form II), the autophagosomal membrane-...

متن کامل

Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015